When structure isn’t enough: Discourse contrast in resolving focus-sensitive coordination.

Jesse Harris (UCLA, jharris@humnet.ucla.edu) & Katy Carlson (Morehead State University)

In focus-sensitive coordination (FSC) constructions, e.g., *John can’t run a MILE, let alone a MARATHON*, contrastive focus marks the elements (*mile* and *marathon*) standing in a scalar relationship (<<) with respect to an activity or event: *running a marathon << running a mile*. While FSCs appear to be simple coordination structures, recent literature (Toosarvandani, 2010; Harris, 2014) proposes that what follows *let alone* is a focus-marked remnant to clausal ellipsis (e.g., *let alone [FOC a marathon]1 John can’t run 12*). The processor must (i) construct a remnant of the right syntactic type, and (ii) locate a correlate contrasting with the remnant. Three experiments show that expectations derived from focus, discourse, and structural information guide interpretation.

As far as remnant type (i), NPs (1a) and VPs (1b) are common in corpora (~85% in BNC/CoCA) and in completion tasks. Here, we tested whether discourse factors lead the processor to expect one type of remnant, by first manipulating pitch accent location and then biasing context. In Experiment 1 (auditory forced-choice completion), 48 subjects chose between NP and VP remnants after either NP (2a) or V (2b) accent. As predicted, pitch accent location strongly affected remnant choice: NP accent led to an NP remnant preference (61% NPs), and V accent favored VP remnants (28% NPs). Experiment 2 (written naturalness rating; N= 36) followed up by testing how prior written context influences remnant type. We crossed Context (Broad, Narrow VP, Narrow NP) with Remnant type (VP, NP), as in (3). Narrow contexts used *wh*-questions or confirmation of given statements to focus the verb or its object NP. While Broad Contexts were equally consistent with either remnant type, remnants congruent with either type of Narrow context were rated as more natural: VP remnants were rated higher than NP remnants in Narrow VP contexts, and lower than NP remnants in Narrow NP contexts. Experiments 1-2 show that focus structure, as indicated by pitch accent or prior discourse, influenced the preferred remnant type.

As for finding a correlate (ii), the most local antecedent is preferred in corpora, and violating that expectation leads to processing difficulty in online reading. This suggests the **Locality constraint** (4), possibly driven by default focus placement, as with ellipsis generally (e.g., Frazier & Clifton, 1998 for sluicing; Carlson, 2013 for replacives). However, the Locality constraint could be implemented in two possible ways: either (P1) Locality is wholly driven by inferring pitch accent at the end of the clause, or (P2) Locality is partially independent of explicit pitch accent placement, and is instead driven by structural expectations associated with ellipsis resolution. In P1, the Locality preference should be eliminated when non-local correlates are explicitly marked via pitch accent; in P2, pitch accent should facilitate, but not eliminate, the cost of non-local correlates. Experiment 3 (an auditory naturalness rating study; N= 55) investigated P1 and P2 by crossing the Locality of the correlate (Local: object contrast, Non Local: subject contrast) with Accent placement (Subject, Object), as in (5). As predicted, remnants with Local correlates (*a book: M= 5.71*) were rated as more natural than those with Non Local ones (Mary; M = 4.53). Surprisingly, Subject accent was rated higher than Object accent overall, but this effect was due to an interaction in which Subject focus degraded Local correlates (d= −0.67) and improved Non Local correlates (d= 1.69). This pattern supports an independent Locality effect (P2), because a Locality bias persists in the face of explicit pitch accents marking focus.

The results show that remnant type decisions are guided by markers of focus such as pitch accents and discourse contexts. However, the processor follows structural biases operative in other ellipsis structures to locate the correlate, even when focus marking is explicit. These results show that the processor utilizes both discourse and structural expectations when establishing the most likely correlate and remnant pairs in FSCs.
Examples

(1) John can’t run a mile, let alone …
 a. NP Remnant: a marathon.
 b. VP Remnant: sprint one.

(2) Sentence fragment
 a. John doesn’t like MARY, let alone …
 b. John doesn’t LIKE Mary, let alone …

Completion options
 { NP remnant Sue / VP remnant love her}

(3) Contexts
 a. Broad Context: Your girlfriend Alexis is really hard to shop for, isn’t she?
 b. Narrow VP Context: Your girlfriend Alexis loves the shirt you bought her, doesn’t she?
 c. Narrow NP Context: Your girlfriend Alexis likes the outfit you bought her, doesn’t she?

Targets
 d. VP Remnant: Alexis didn’t even like the shirt, let alone love it.
 e. NP Remnant: Alexis didn’t even like the shirt, let alone the outfit.

(4) Locality constraint: Preferentially contrast with the most local constituent possible.

(5) a. Subject accent
 JOHN didn’t buy a magazine, let alone {Non Local MARY / Local a BOOK}.
 b. Object accent
 John didn’t buy a MAGAZINE, let alone {Non Local MARY / Local a BOOK}.

References

Harris, J. A. (2014). Processing let alone coordination in silent reading. Ms. UCLA